Soil Organic Matter Stratification under Pastures

Alan Franzluebbers Watkinsville GA

Soil quality is a concept based on the premise that management can deteriorate, stabilize, or improve soil ecosystem function.

- Soil organic matter (SOM) sustains many key soil functions by
 - providing
 - energy,
 - substrates, and
 - biological diversity
 to support biological activity
 - all of which affect
 - aggregation (soil erosion, habitat, oxygen supply)
 - infiltration (leaching, runoff, crop water uptake)
 - decomposition (nutrient cycling, detoxification)

- Lack of residue cover and exposure of soil to high-intensity rainfall leads to:
 - poor aggregation
 - reduced plantwater availability
 - erosion
 - off-site impacts
 Sedimentation
 - poor water quality
- Characteristics of poor soil quality

- Degree of stratification of soil organic C and N pools with depth, expressed as a ratio, could indicate soil quality or soil ecosystem function.
- Stratification ratios would allow a wide diversity of soils to be compared on the same assessment scale, because of internal normalization that accounts for inherent soil differences.

Hypothesis

Grass-based agricultural systems may improve soil quality and this could be recognized by high stratification ratios.

Soil Organic Carbon (g⁻¹)

Objectives

- Determine the effect of various forage and pasture management strategies on the stratification ratio of soil organic C and N pools.
- ✓ Identify the most dynamic soil C and N components that respond to management.

1. Environmental conditions

- ✓ 16.5 °C mean annual temperature
- ✓ 125 cm mean annual precipitation
- ✓ 156 cm mean annual pan evaporation
- Clayey, kaolinitic, thermic Typic Kanhapludults

2. Management comparison (cropland vs grazingland)

Conservation-tillage cropland (24-yr-old)

Grazed tall fescuecommon bermuda grass (20-yr-old)

2. Management comparison (haying vs grazing)

Hayed bermuda grass (15-19-yr-old)

Grazed bermuda grass (15-19-yr-old)

2. Management comparison (years of grazing)

- Chronosequence of grazed 'K-31' tall fescue pasture (10, 17, and 50-yr-old)
- Chronosequence of hayed 'Coastal' bermudagrass (6, 12, and 40-yr-old)

2. Management comparison (long-term land use)

Cropland (24-yr-old)

Hayland (40-yr-old)

Grazingland (50-yr-old)

Forestland (130-yr-old)

- 2. Management comparison (first 5 years of forage mgt)
 - Conversion of degraded cropland to forage management with either:
 - Unharvested
 - Low grazing pressure
 - High grazing pressure
 - Hayed

Forage utilization

3. Soil analyses

- Soil organic C and N
 - Dry combustion
- Particulate organic C and N
 - Dry combustion of material collected on a 0.05mm screen following dispersion
- Soil microbial biomass C
 - Chloroform fumigation—incubation w/o control
- Potential C and N mineralization
 - Soil incubated at 25 °C and 50% WFPS for 24 days

4. Calculation of stratification ratios

12.5

- Soil depth (cm) Concentration of soil property at 0-5-cm depth divided by concentration at 12.5-20-cm depth.
 - Soil property near the bottom of the 'plow layer' should reflect an inherent characteristic to normalize each soil.

1. Cropland vs grazingland

Tall fescue pasture

Stratification ratio of	
(0-5 cm) / (12.5-20 cm)	•

Soil organic C Particulate organic C Soil microbial biomass C Potential C mineralization

Conserva	tion	tillage
CONSCIVE	UOH	unago

3.5	ns	4.0
6.2	**	11.5
3.1	ns	2.6
25.5	ns	20.6

2. Haying vs grazing

(0-5 cm) / (12.5-20 cm):
Soil organic C Particulate organic C Soil microbial biomass C Potential C mineralization

Stratification ratio of

Graze		Hayed		
6.0	ns	4.9		
18.0	**	11.5		
3.7	ns	3.3		
17.4	ns	20.4		

3. a. Chronosequence of hayed bermudagrass

Stratification ratio of	Hayed bermi	udagrass	chronose	equence
(0-5 cm) / (12.5-20 cm):	6 yr	12 yr	40 yr	
Soil organic C	4.3	3.7	6.8	*
Particulate organic C	8.4	10.2	10.5	ns
Soil microbial biomass C	3.2	2.9	4.2	*
Potential C mineralization	24.4	15.7	12.6	*

3. b. Chronosequence of grazed tall fescue

Stratification ratio of	Grazed tall fescue chronosequence			
(0-5 cm) / (12.5-20 cm):	10 yr	17 yr	50 yr	
Soil organic C	4.7	5.0	7.5	*
Particulate organic C	12.3	11.0	17.8	*
Soil microbial biomass C	3.8	3.0	5.2	*
Potential C mineralization	20.4	16.3	15.9	ns

4. Long-term land use

Surface residue C (Mg/ha)

0.2

0.3

0.2

1.9

(0-5 cm) / (12.5-20 cm):	LSD _(p=0.05)	Cropland	Hayland	Grazingland	Forestland
Soil organic C	2.0	3.5	6.8	7.5	3.9
Particulate organic C	4.1	6.2	10.5	17.8	4.2
Soil microbial biomass C	1.4	3.1	4.2	5.2	2.7
Potential C mineralization	13.4	25.6	12.6	15.9	13.0

5. First 5 years of forage management a. Effect of fertilization type

5. First 5 years of forage managementb. Effect of harvest strategy

5. First 5 years of forage management c. Effect of harvest strategy at the end of 5 years

				Gra	ızıng	
	Stratification ratio of	LSD	Un	Low	High	
ı	(0-6 cm) / (12-20 cm):	(p=0.05)	harvested	Pressure	Pressure	Hayed
	Soil organic C	0.7	3.4	3.6	3.6	2.7
	Total soil N	1.7	6.7	7.1	7.3	5.3
	Bulk density	0.04	0.77	0.77	0.82	0.83

6. Sensitivity of soil properties to stratification

Sensitivity was calculated as the ratio of Fvalues from known-to-unknown variability; highest values indicate greatest sensitivity.

Soil microbial biomass C	4.3 a	Potential N mineralization	3.1 abc
Particulate organic N	3.5 ab	Potential C mineralization	3.1 abc
Particulate organic C	3.5 ab	Soil inorganic N	2.3 bc
Total organic C	3.4 ab	Flush of CO2 in 3 days	2.2 bc
Total soil N	3.2 abc	Non-particulate organic N	1.7 bc
Soil bulk density	3.1 abc	Non-particulate organic C	1.4 c

Summary

- Stratification of soil properties with depth is a consequence of conservation management that supplies organic residues at the soil surface resulting in:
 - protection of the soil surface from erosion
 - concentration of substrates to enhance biodiversity
 - development of biologically supported physicochemical processes (e.g., aggregation, nutrient cycling)

Summary

- Land management with cattle grazing resulted in stratification ratios that were as high or higher than:
 - conservation-tillage cropland
 - haying to remove grass without animal traffic
 - natural forestland
- Soil organic C and N pools became quickly stratified under pastures following conversion from degraded cropland.

Conclusion

Prediction of optimum soil quality with stratification ratios is still premature, but the average soil organic C stratification ratio of 5 under the various pasture systems evaluated here might be a reasonable target.

